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butes to quadratic or linear behavior depends on the 
magnitude of a/H, where a j is a measure of in­
ternal strain. If ff is sufficiently large, this quan­
tity will be small for all a j and quadratic behavior 
observed, . while if ff is sufficiently small, many 
local strain regions will contribute to linear be­
havior and the linear term will dominate. 

(ii) Similar variation of a and b with increased 
internal strain, as observed by Parfenov and Voro­
shilov, is expected since local strain regions con­
tributing to both linear and quadratic behavior 
would increase. 

(iii) Parfenov and Voroshilov also observed that 
a is proportional to Ms under temperature varia­
tion in nickel. From this calculation, a is pro­
portional to B/ IJ.Ms as shown by Eq. (13), and since, 
in nickel, B/ IJ. is proportional to ~,15 this behavior 
is expected. 

VII. CONCLUSION 

The primary conclusion is to suggest that the 
a/ H term in the expression for the approach to 
saturation has been overemphasized. Its origin 
is in the residual internal strain of magnetic 
material and it has validity only over a limited 
region of the H axis. Secondary results are the 
model and calculation which determine the mag­
netic behavior of porous magnetic material subject 
to hydrostatic pressure. It is worth mentioning 
that this technique suggests a method for controlled 
investigation of thp. effects of internal strain on ma­
terial properties. 
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APPENDIX 

The following calculation will show that the sub­
sequent functional dependence of M/ Ms on P/H, 
after the initial quadratic behavior, is linear with 
a slope given by Eq. (13). The magnetic equilib­
rium relation, Eq. (9), can be written 

,...s 3 sin2(I/!+e) BP 
-;?"="4 sinllt IJ.MsH 

(14) 

ThiS, in principle, can be solved for cosl/!, giving 

COSI/!=g(;;h ' e) , 
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where g is an unknown function, u= r/ a, and h 
= IJ.MsH/B is the reduced field. Averaging cosl/! 
over a spherical surface gives 

(cosl/!)aY = m(u) = k(;;h) , 
where k is another unknown function and m(u) is the 
average normalized magnetization in the direction 
of the applied field in a spherical shell at a radius 
r. This can be inverted to obtain 

u3 = (P/h)j(m) • (15) 

Againj is unknown. Equation (15) will be used in 
the following. First an expression for the macro­
scopic magnetization in the porous material is re­
quired. In terms of the proposed model in Sec. IT 
this is 

- =~ 11" S m",zdr M 4 fro 
Ms 311"rO 

a 

or 

M iro/a - = 3p mJldu, 
M. 1 

where p = ti /ra is porosity. 
In antiCipation of linear behavior consider 

dM/M (ro/a am I 2 
=:iP)h = 3p JI ap/h" u du . 

The mathematical identity 

am I au I 
ap /h "= - ap /h m 

ami 
au Plh 

with Eq. (15) gives 

am I j(m) 
ap/h "= - 3u 2 

am I 
au Plh ' 

and therefore 

dM/M. = _pi ro/a j( ) am I d 
dP /h 1 m au PI h u. 

In a region where the magneto-elastic energy dom­
inates at the lower integration limit while the mag­
netic energy dominates at the upper limit, the in­
tegral transforms to 

dM/M. _ 11 
dP/h - - p j(m) dm . 

• /4 

(16) 

This shows the antiCipated linear behavior which 
is expected to occur in some region of the P/h axis. 
Equation (16) is Eq. (13) with y given by the integral 
expression. 
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